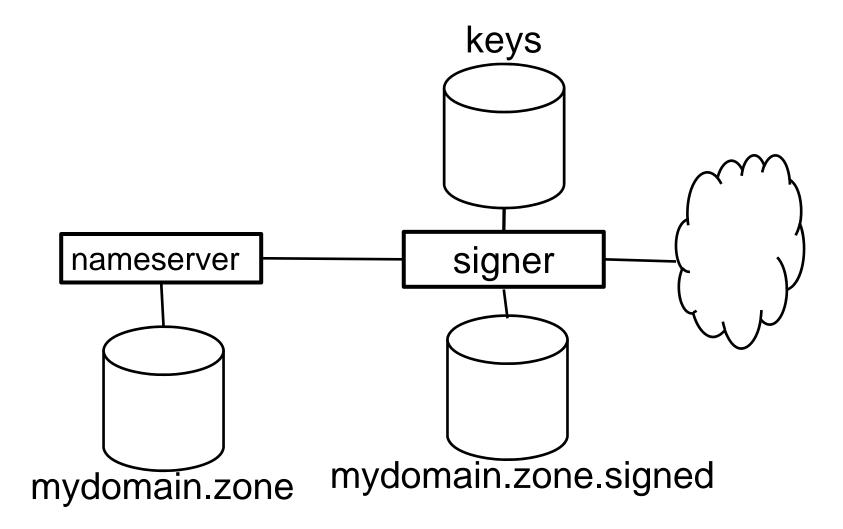


DNSSEC Implementation Considerations and Risk Analysis

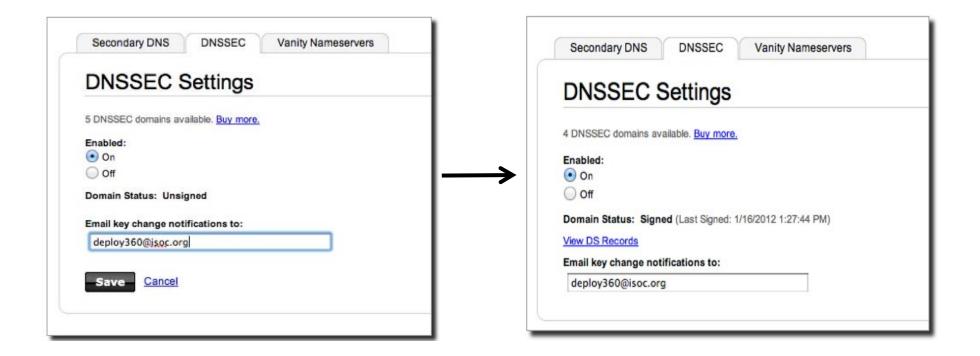
Midrand, South Africa 8-10 July 2015 richard.lamb@icann.org

DNSSEC: We have passed the point of

Design Considerations


How do I sign a zone?

That's it


dnssec-signzone mydomain.zone mydomain.zone.signed

www.abc.com. IN A 192.101.186.125

One way to do this

or...another

http://www.internetsociety.org/deploy360/resources/how-to-sign-your-domain-with-dnssec-using-godaddy-com/

It's a question of risk / trust, but is does not have to be expensive

Goals

- Reliable
- Trusted
- Cost Effective (for you)

Cost Effectiveness

Cost Effectiveness

- Risk Assessment
- Cost Benefit Analysis

Business Benefits and Motivation

(from "The Costs of DNSSEC Deployment" ENISA report)

- Become a reliable source of trust and boost market share and/or reputation of zones;
- Lead by example and stimulate parties further down in the chain to adopt DNSSEC;
- Earn recognition in the DNS community and share knowledge with TLD's and others;
- Provide assurance to end-user that domain name services are reliable and trustworthy;
- Look forward to increasing adoption rate when revenue is an important driver. Deploying DNSSEC can be profitable;

Risk Assessment

- Identify your risks
 - Reputational
 - Competition
 - Loss of contract
 - Legal / Financial
 - Who is the relying party?
 - -SLA
 - Law suits
- Build your risk profile
 - Determine your acceptable level of risk

Vulnerabilities

- False expectations
- Key compromise
- Signer compromise
- Zone file compromise

Cost Benefit Analysis

Setting reasonable expectations means it doesn't have to be expensive

From ENISA Report

- "....organizations considering implementing DNSSEC can greatly benefit from the work performed by the pioneers and early adopters."
- Few above 266240 Euros: Big Spenders: DNSSEC as an excuse to upgrade all infrastructure; embrace increased responsibility and trust through better governance.
- Most below 36059 Euros: Big Savers: reuse existing infrastructure. Do minimum.

Anticipated Capital and Operating Expense

- Being a trust anchor requires mature business processes, especially in key management;
- Investment cost also depends on strategic positioning towards DNSSEC: leaders pay the bill, followers can limit their investment;
- Financial cost might not outweigh the financial benefits. Prepare to write off the financial investment over 3 to 5 years, needed to gear up end-user equipment with DNSSEC.

Other Cost Analysis

- People
 - Swedebank half a FTE
 - Occasional shared duties for others
- Facilities
 - Datacenter space
 - Safe ~ \$100 \$14000
- Crypto Equip ~ \$5-\$40000
- Bandwidth ~ 4 x

http://www.internetdagarna.se/arkiv/2008/www.internetdagarna.se/images/stories/doc/22 Kjell Rydger DNSSEC from a bank perspective 2008-10-20.pdf

Trusted

Trust

- Transparent
- Secure

Transparency

Transparency

- The power of truth
 - Transparency floats all boats here
- Say what you do
- Do what you say
- Prove it

Say what you do

- Setting expectations
- Document what you do and how you do it
- Maintain up to date documentation
- Define Organization Roles and responsibilities
- Describe Services, facilities, system, processes, parameters

Learn from CA successes (and mistakes)

• The good:

- The people
- The mindset
- The practices
- The legal framework
- The audit against international accounting and technical standards

Creating Trust Online^a

The bad:

- Diluted trust with a race to the bottom (>1400 CA's)
- DigiNotar
 - Weak and inconsistent polices and controls
 - Lack of compromise notification (non-transparent)
 - Audits don't solve everything (ETSI audit)

Say What You Do - Learn from Existing Trust Services

- Borrow many practices from SSL Certification Authorities (CA)
 - Published Certificate Practices Statements (CPS)
 - VeriSign, GoDaddy, etc...
 - Documented Policy and Practices (e.g., key management ceremony, audit materials, emergency procedures, contingency planning, lost facilities, etc...)

Say What You Do - DNSSEC Practices Statement

- DNSSEC Policy/Practices Statement (DPS)
 - Drawn from SSL CA CPS
 - Provides a level of assurance and transparency to the stakeholders relying on the security of the operations.
 - Regular re-assessment
 - Management signoff
 - Formalize Policy Management Authority (PMA)

Documentation - Root

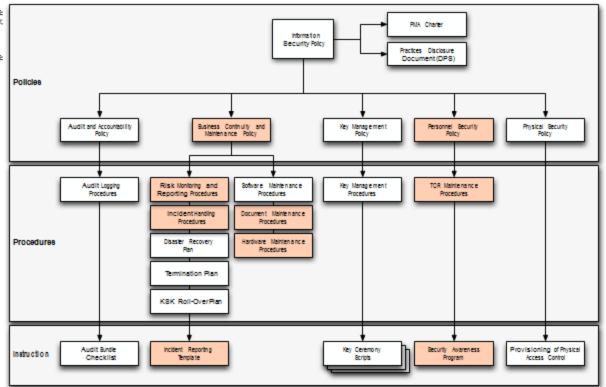
Root DNSSEC Design Team

F. Ljunggren
Kirei
T. Okubo
VeriSign
R. Lamb
ICANN
J. Schlyter
Kirei
May 21, 2010

DNSSEC Practice Statement for the Root Zone KSK Operator

Abstract

This document is the DNSSEC Practice Statement (DPS) for the Root Zone Key Signing Key (KSK) Operator. It states the practices and provisions that are used to provide Root Zone Kev Signing and Kev


Distribution services. These include, issuing, managing, changing and distrik with the specific requirements of the U

Copyright Notice

Copyright 2009 by VeriSign, Inc., and k Assigned Names and Numbers. This work

Root DPS

91 Pages and tree of other documents!

Documentation - .SE

Socurity

Documentation

DNSSEC

Practice Statement (DPS)

22 pages, Creative Commons License!

Most recently saved: 22 april 2010

.se

.SE DPS

Do what you say

- Follow documented procedures / checklists
- Maintain logs, records and reports of each action, including incidents.
- Critical operations at Key Ceremonies
 - Video
 - Logged
 - Witnessed

Key Ceremony

A filmed and audited process carefully scripted for maximum transparency at which cryptographic key material is generated or used.

Prove it

- Audits
 - -3rd party auditor \$\$

- -ISO 27000 \$\$ etc..
- -Internal

Prove it - Audit Material

- Key Ceremony Scripts
- Access Control System logs
- Facility, Room, Safe logs
- Video
- Annual Inventory
- Logs from other Compensating Controls
- Incident Reports

Prove it

- Stakeholder Involvement
 - -Publish updated material and reports
 - Participation, e.g. External Witnesses from
 - -local Internet community
 - -Government
 - Listen to Feedback

Prove it

- Be Responsible
 - -Executive Level Involvement
 - In policies via Policy Management Authority
 - Key Ceremony participation

Security

Building in security

 Getting the machinery for DNSSEC is easy (BIND, NSD/Unbound, OpenDNSSEC, etc..).

Finding good security practices to run it is not.

Security

- Physical
- Logical
- Crypto

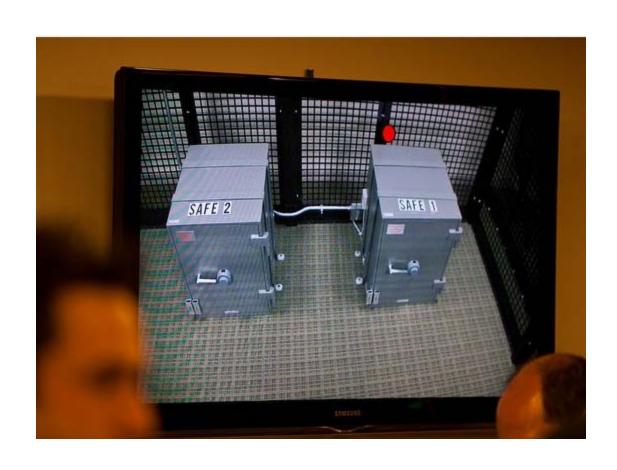
Physical

- Environmental
- Tiers
- Access Control
- Intrusion Detection
- Disaster Recovery

Physical - Environmental

- Based on your risk profile
- Suitable
 - Power
 - Air Conditioning
- Protection from
 - Flooding
 - Fire
 - Earthquake

Physical - Tiers


- Each tier should be successively harder to penetrate than the last
 - Facility
 - Cage/Room
 - Rack
 - Safe
 - System
- Think of concentric boxes

Physical - Tier Construction

- Base on your risk profile and regulations
- Facility design and physical security on
 - Other experience
 - DCID 6/9
 - NIST 800-53 and related documents
 - Safe / container standards

Physical – Safe Tier

Physical – Safe Tier

Physical – Tamper Evident Packaging

Physical - Access Control

- Base on your risk profile
- Access Control System
 - Logs of entry/exit
 - Dual occupancy / Anti-passback
 - Allow Emergency Access
- High Security: Control physical access to system independent of physical access controls for the facility

Physical - Intrusion Detection

- Intrusion Detection System
 - Sensors
 - Motion
 - Camera
- Tamper Evident Safes and Packaging
- Tamper Proof Equipment

Physical - Disaster Recovery

- Multiple sites
 - Mirror
 - Backup
- Geographical and Vendor diversity

Logical

- Authentication (passwords, PINs)
- Multi-Party controls

Logical - Authentication

Procedural:

- REAL passwords
- Forced regular updates
- Out-of-band checks

• Hardware:

- Two-factor authentication
- Smart cards (cryptographic)

Logical - Multi-Party Control

- Split Control / Separation of Duties
 - E.g., Security Officer and System Admin and Safe
 Controller
- M-of-N
 - Built in equipment (e.g. HSM)
 - Procedural: Split PIN
 - Bolt-On: Split key (Shamir, e.g. ssss.c)

Crypto

- Algorithms / Key Length
- Crypto Hardware

Crypto - Algorithms / Key Length

- Factors in selection
 - Cryptanalysis
 - Regulations
 - Network limitations

Crypto - Key Length

Cryptanalysis from NIST: 2048 bit RSA SHA256

Recommended Minimum Cryptographic Strength for DNSSEC			
Year	Min. Bit Strength	Algorithm Suites	Key Sizes
Now->2010	80	DSA/SHA-1 RSA/SHA-1	Both: 1024 bits
2010->2029	112	DSA/SHA-256 RSA/SHA-256	Both: 2048 bits
2030 and Beyond	128	DSA/SHA-256 RSA/SHA-256	Both: 3072 bits

Crypto - Algorithms

- Local regulations may determine algorithm
 - GOST
 - DSA
- Network limitations
 - Fragmentation means shorter key length is better
 - ZSK may be shorter since it gets rolled often
 - Elliptical is ideal but not commonplace

Crypto - Algorithms

- NSEC3 if required
 - Protects against zone walking
 - Avoid if not needed adds overhead for small zones
 - Non-disclosure agreement?
 - Regulatory requirement?
 - Useful if zone is large, not trivially guessable (only "www" and "mail") or structured (ip6.arpa), and not expected to have many signed delegations ("opt-out" avoids recalculation).

Crypto - Hardware

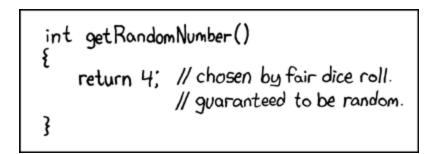
- Satisfy your stakeholders
 - Doesn't need to be certified to be secure (e.g., off-line PC)
 - Can use transparent process and procedures to instill trust
 - But most Registries use or plan to use HSM. Maybe CYA?
- AT LEAST USE A GOOD Random Number Generator (RNG)!
- Use common standards avoid vendor lock-in.
 - Note: KSK rollover may be ~10 years.
- Remember you must have a way to backup keys!

Crypto - Hardware Security Module (HSM)

- FIPS 140-2 Level 3
 - Sun SCA6000 (~30000 RSA 1024/sec) ~\$10000 (was \$1000!!)
 - Thales/Ncipher nshield (~500 RSA 1024/sec) ~\$15000
 - Ultimaco
- FIPS 140-2 Level 4
 - AEP Keyper (~1200 RSA 1024/sec) ~\$15000
 - IBM 4765 (~1000 RSA 1024/sec) ~\$9000
- Recognized by your national certification authority
 - Kryptus (Brazil) ~ \$2500

Study: http://www.opendnssec.org/wp-content/uploads/2011/01/A-Review-of-Hardware-Security-Modules-Fall-2010.pdf

Crypto - PKCS11


- A common interface for HSM and smartcards
 - C_Sign()
 - C_GeneratePair()
- Avoids vendor lock-in somewhat
- Vendor Supplied Drivers (mostly Linux, Windows) and some open source


Crypto - Smartcards / Tokens

- Smartcards (PKI) (card reader ~\$12)
 - AthenaSC IDProtect ~\$30
 - Feitian ~\$5-10
 - Aventra ~\$11
- TPM
 - Built into many PCs
- Token
 - Aladdin/SafeNet USB e-Token ~\$50
- Open source PKCS11 Drivers available
 - OpenSC
- Has RNG
- Slow ~0.5-10 1024 RSA signatures per second

Crypto -Random Number Generator

- X rand()
- X Netscape: Date+PIDs
- ✓ LavaRand
- ? System Entropy (/dev/random-urandom)
- ? H/W, Quantum Mechanical (laser) \$\$
- √ Standards based (FIPS, NIST 800-90 DRBG)
- ✓ Built into CPU chips

Crypto - FIPS 140-2 Level 4 HSM

Root, .FR, .CA ...

Crypto – FIPS Level 3 HSM

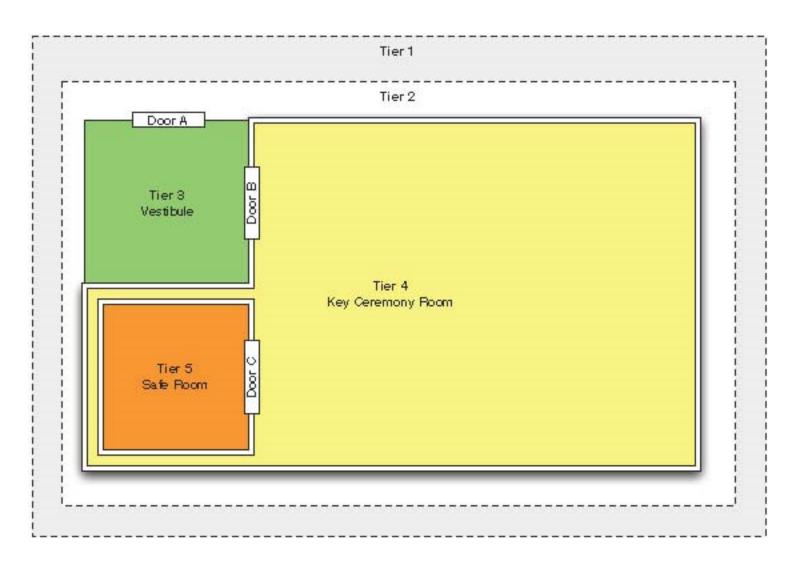
- But FIPS 140-2 Level 3 is also common
- Many TLDs using Level 3 .com , .se, .uk, .com, etc... \$10K-\$40K

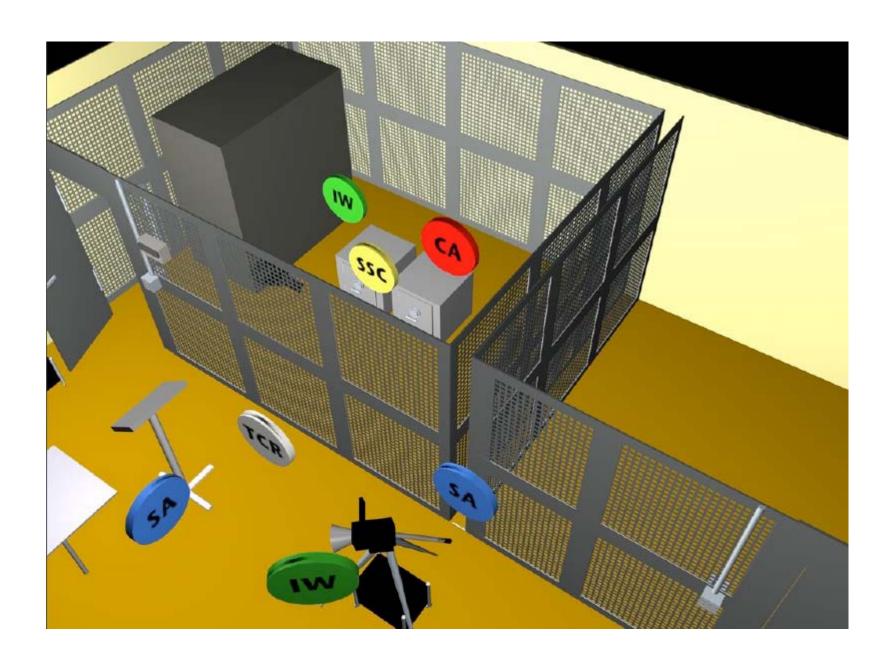
An implementation can be thi\$

...or this

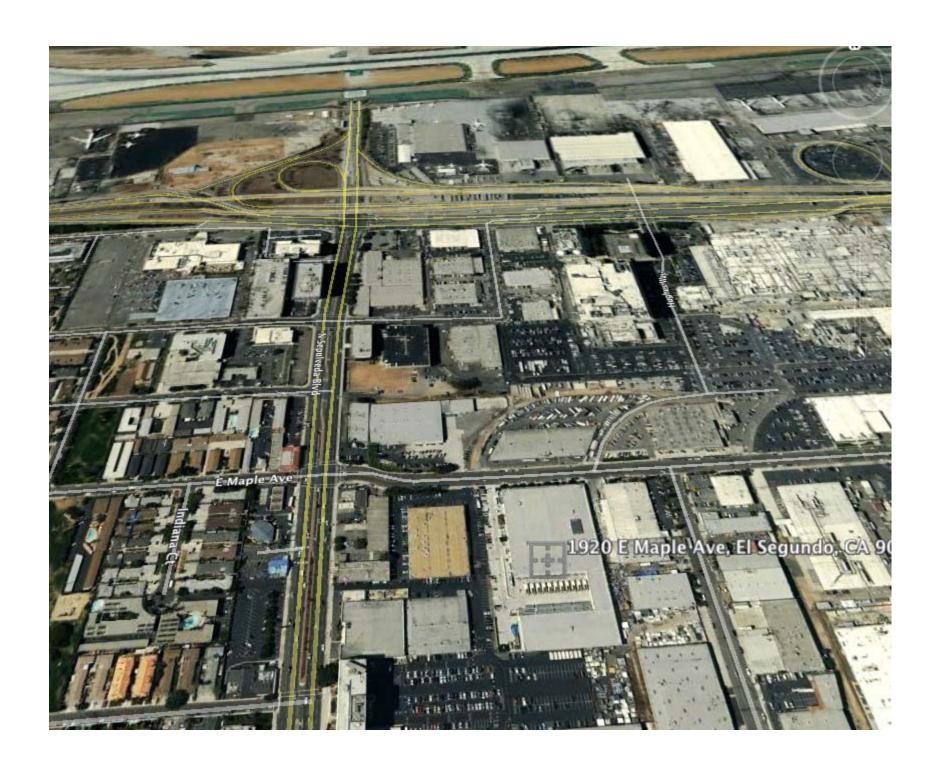
Physical Security

- An electromagnetic shielding datacenter (following GJBz20219-94 "C" level of PRC) is being used, and only authorized persons may access
- HSMs and hidden master servers are kept in the electro-magnetic shielding datacenter
- A backup system is established in disaster datacenter in Chengdu, with the same security insurance level as that of Beijing





http://singapore49.icann.org/en/schedule/weddnssec/presentation-dnssec-deployment-cn-26mar14-en.pdf


Physical Security

http://www.flickr.com/photos/kjd/sets/72157624302045698/

...or this

tive levels of security: Level 1, L/ d environments in which cryptog ign and implementation of a cry act identified as:

Athena IDProtect by Athen AT90SC25672RCT Revision D; I

ting accredited laboratory.

Level 4 Cryptographic Key Management:

Level 3 Self-Tests:

Mitigation of Other Attacks:

Level N/A tested in the following configuration(s): N/A

Algorithms are used: Triple-DES (Cert. #560); Triple-DES MAC (Triple-DES Cert. #560, vendor affirmed); AES (Cert. #577); SHS (Cert. #533); RNG (Cert. #332); RSA (Cert. #264)

пто стуросущить писсия выстанти ин following non-FIPS approved algorithms:

Level 3

RSA (key wrapping; key establishment methodology provides between 80 and 112 bits of encryption strength)

Level 3

Level 3

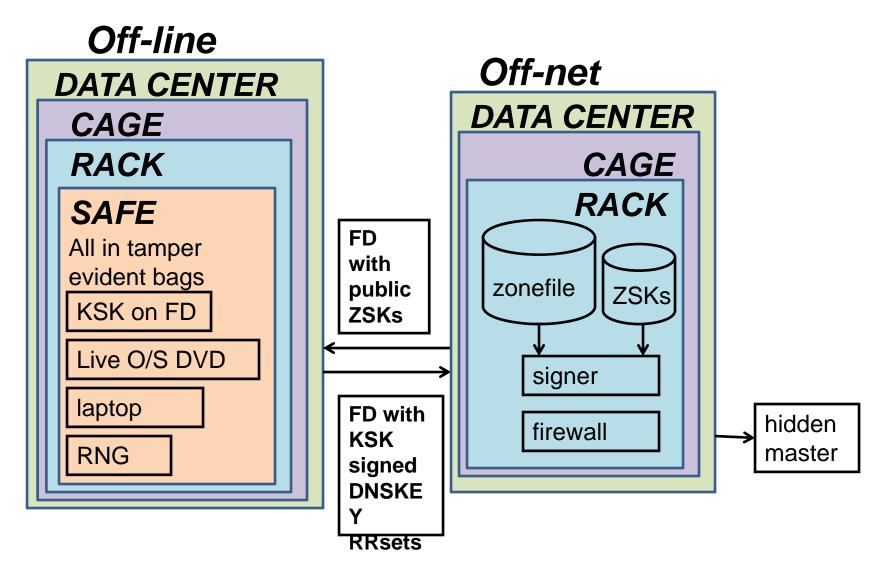
Level 3

Overall Level Achieved: 3

Signed on behalf of the Government of the United States

Signature: Rellion C. Barker

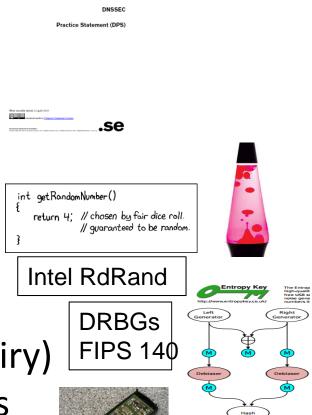
Chief, Computer Security Division National Institute of Standards and Technology Signed on behalf of the Government of Canada


Signature: So Hanch 2008

Director, Industry Program Group Communications Security Establishment

..or this (from .cr) EPP BIND&DNS Público -> Anycest ns.cr (UCR) Transport KSK unsigned Privado -> signed Frid -Client DNSKEY Sign ZSKs Sign zones zone with KSK with ZSK **RRsets** RIPE Anycest **Offline Laptop** Online/off net signed with TPM DNSSEC zone Signer with TPM[®] CHILE DNSSEC Fred KSK **Transport** ZSKs Generate public half KSK of ZSKs Generate ZSKs Secure Off-Verify Relead+Notify ns.cr (NIC) line secundario.nic.cr MASTER Signed **Environment** Zone Registro de dominios bajo Animated slide

...or even this

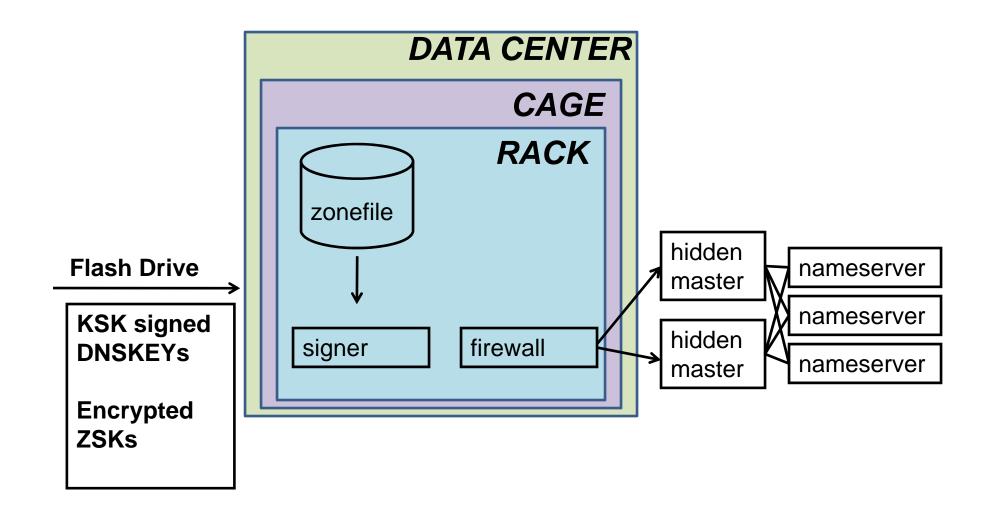


But all must have:

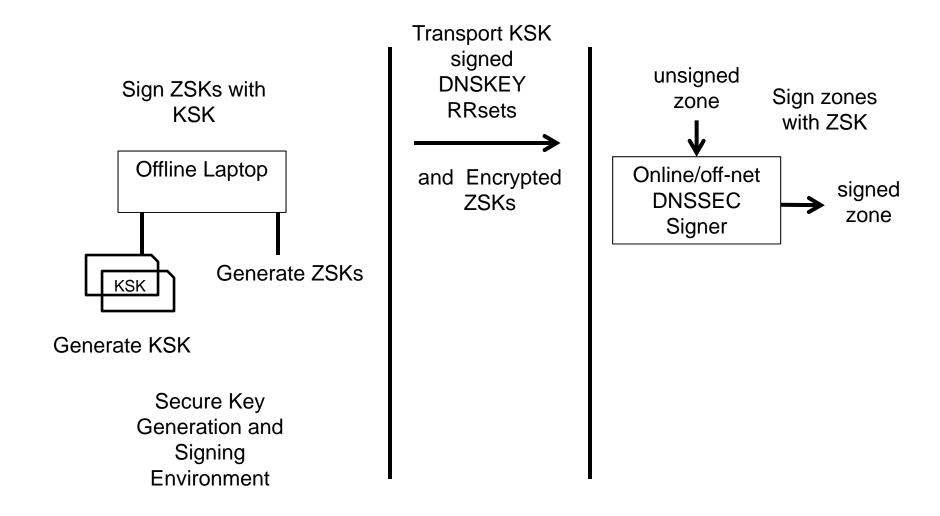
- Published practice statement
 - Overview of operations
 - Setting expectations
 - Normal
 - Emergency
 - Limiting liability
- Documented procedures
- Multi person access requirements
- Audit logs
- Monitoring (e.g., for signature expiry)
- Good Random Number Generators

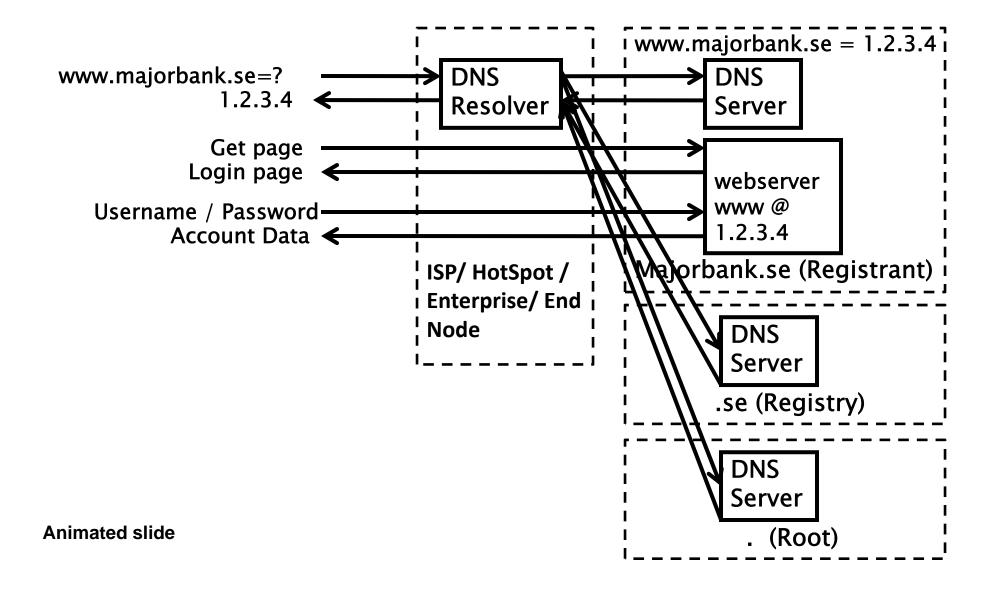
Useful IETF RFCs:

DNSSEC Operational Practices http://tools.ietf.org/html/draft-ietf-dnsop-rfc4641bis


Demo Implementation

- Key lengths KSK:2048 RSA ZSK:1024 RSA
- Rollover KSK:as needed ZSK:90 days
- RSASHA256 NSEC3
- Physical HSM/smartcards inside Safe inside Rack inside Cage inside Commercial Data Center
- Logical Separation of roles: cage access, safe combination,
 HSM/smartcard activation across three roles
- Crypto use FIPS certified smartcards as HSM and RNG
 - Generate KSK and ZSK offline using RNG
 - KSK use off-line
 - ZSK use off-net


Off-Line Key generator and KSK Signer

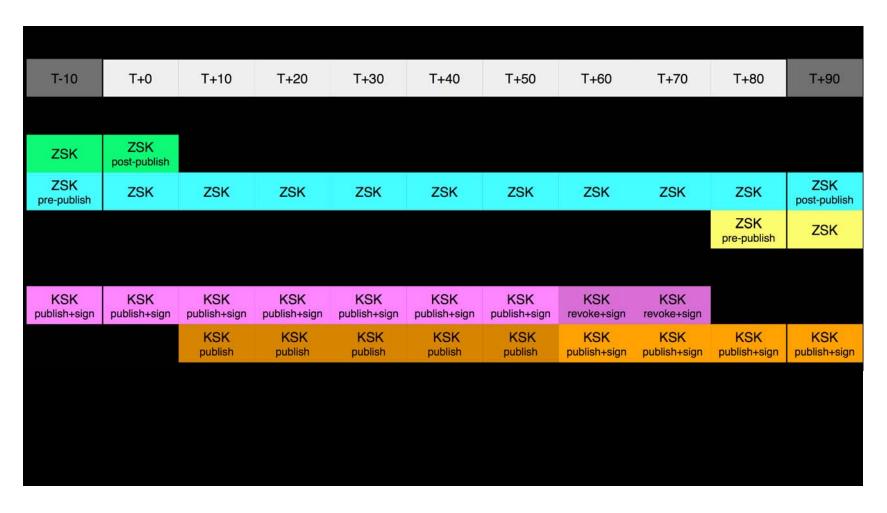

Off-Net Signer

Key Management

DNS+DNSSEC

Simple Key Management Scripts

Keeping things signed


- If the signatures are going to expire soon, sign the zone
- Define "soon"
- Also sign if a record has changed
- That's it!

```
while(1) {
  t = time
  if(exp - t) < 5 days {
     inc = t
     exp = t + 10 days
     touch infile
  if new infile {
    cat infile keys > zonefile
    increment zonefile SOA serial
    signzone -s inc -e exp zonefile
                       zsk-current ksk
    rndc reload
  sleep 1 second
```

Rolling keys

- Mind the cache DNS resolvers have memory
- Publish the new ZSK before signing with it
 - Put the new ZSK in the DNSKEY RRset along with old ZSK and wait until everyone see its
- Sign the zone with the new ZSK until you want to change it
- But do not un-Publish the old ZSK until no one may need it

Key Rollover Schedule - Root

https://www.iana.org/dnssec

generate zsk-new cat zsk-new zsk-current ksk > keys touch infile sleep >2xTTL copy zsk-new zsk-current touch infile sleep >2xTTL cat zsk-current ksk > keys touch infile sleep >2xTTL

Some Recent Recommendations...

"One obstacle for the implementation of DNSSEC is the lack of guidance for individual domain holders regarding which requirements should be defined - in particular for small and medium-sized businesses. In order to remedy that obstacle, .SE has written a guide as an aid and tool for municipalities that have the intention to implement DNSSEC, but this guide also applies to other types of organizations in both the public and private sectors."

https://www.iis.se/english/domains/tech/recommendations-for-dnssec-deployment/

Anne-Marie Eklund Löwinder
Chief Information Security Officer
.SE (The Internet Infrastructure Foundation)